extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C8)⋊1C22 = C22⋊D8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | | (C2xC8):1C2^2 | 64,128 |
(C2×C8)⋊2C22 = C2×C8⋊C22 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | | (C2xC8):2C2^2 | 64,254 |
(C2×C8)⋊3C22 = D8⋊C22 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8):3C2^2 | 64,256 |
(C2×C8)⋊4C22 = D4○D8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4+ | (C2xC8):4C2^2 | 64,257 |
(C2×C8)⋊5C22 = D4○SD16 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8):5C2^2 | 64,258 |
(C2×C8)⋊6C22 = C22⋊SD16 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | | (C2xC8):6C2^2 | 64,131 |
(C2×C8)⋊7C22 = C24.4C4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | | (C2xC8):7C2^2 | 64,88 |
(C2×C8)⋊8C22 = C23.37D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | | (C2xC8):8C2^2 | 64,99 |
(C2×C8)⋊9C22 = Q8○M4(2) | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8):9C2^2 | 64,249 |
(C2×C8)⋊10C22 = C2×C22⋊C8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8):10C2^2 | 64,87 |
(C2×C8)⋊11C22 = C2×D4⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8):11C2^2 | 64,95 |
(C2×C8)⋊12C22 = C22×D8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8):12C2^2 | 64,250 |
(C2×C8)⋊13C22 = C2×C4○D8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8):13C2^2 | 64,253 |
(C2×C8)⋊14C22 = C22×SD16 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8):14C2^2 | 64,251 |
(C2×C8)⋊15C22 = C22×M4(2) | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8):15C2^2 | 64,247 |
(C2×C8)⋊16C22 = C2×C8○D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8):16C2^2 | 64,248 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C8).1C22 = D4⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).1C2^2 | 64,130 |
(C2×C8).2C22 = C22⋊Q16 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).2C2^2 | 64,132 |
(C2×C8).3C22 = C4⋊D8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).3C2^2 | 64,140 |
(C2×C8).4C22 = C4⋊2Q16 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).4C2^2 | 64,143 |
(C2×C8).5C22 = D4⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).5C2^2 | 64,155 |
(C2×C8).6C22 = C4.Q16 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).6C2^2 | 64,158 |
(C2×C8).7C22 = C22.D8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).7C2^2 | 64,161 |
(C2×C8).8C22 = C23.48D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).8C2^2 | 64,165 |
(C2×C8).9C22 = D8⋊2C4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).9C2^2 | 64,41 |
(C2×C8).10C22 = M5(2)⋊C2 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4+ | (C2xC8).10C2^2 | 64,42 |
(C2×C8).11C22 = C8.17D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | 4- | (C2xC8).11C2^2 | 64,43 |
(C2×C8).12C22 = C8.Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).12C2^2 | 64,46 |
(C2×C8).13C22 = M4(2)⋊C4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).13C2^2 | 64,109 |
(C2×C8).14C22 = M4(2).C4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).14C2^2 | 64,111 |
(C2×C8).15C22 = D8⋊C4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).15C2^2 | 64,123 |
(C2×C8).16C22 = C8⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).16C2^2 | 64,150 |
(C2×C8).17C22 = D4.3D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).17C2^2 | 64,152 |
(C2×C8).18C22 = D4.4D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4+ | (C2xC8).18C2^2 | 64,153 |
(C2×C8).19C22 = D4.5D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | 4- | (C2xC8).19C2^2 | 64,154 |
(C2×C8).20C22 = C8⋊3D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).20C2^2 | 64,177 |
(C2×C8).21C22 = C8.2D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).21C2^2 | 64,178 |
(C2×C8).22C22 = C8⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).22C2^2 | 64,182 |
(C2×C8).23C22 = C16⋊C22 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4+ | (C2xC8).23C2^2 | 64,190 |
(C2×C8).24C22 = Q32⋊C2 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | 4- | (C2xC8).24C2^2 | 64,191 |
(C2×C8).25C22 = C2×C8.C22 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).25C2^2 | 64,255 |
(C2×C8).26C22 = Q8○D8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | 4- | (C2xC8).26C2^2 | 64,259 |
(C2×C8).27C22 = Q8⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).27C2^2 | 64,129 |
(C2×C8).28C22 = D4.7D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).28C2^2 | 64,133 |
(C2×C8).29C22 = C4⋊SD16 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).29C2^2 | 64,141 |
(C2×C8).30C22 = D4.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).30C2^2 | 64,142 |
(C2×C8).31C22 = D4.2D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).31C2^2 | 64,144 |
(C2×C8).32C22 = Q8.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).32C2^2 | 64,145 |
(C2×C8).33C22 = Q8⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).33C2^2 | 64,156 |
(C2×C8).34C22 = D4⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).34C2^2 | 64,157 |
(C2×C8).35C22 = D4.Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).35C2^2 | 64,159 |
(C2×C8).36C22 = Q8.Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).36C2^2 | 64,160 |
(C2×C8).37C22 = C23.46D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).37C2^2 | 64,162 |
(C2×C8).38C22 = C23.19D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).38C2^2 | 64,163 |
(C2×C8).39C22 = C23.47D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).39C2^2 | 64,164 |
(C2×C8).40C22 = C23.20D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).40C2^2 | 64,166 |
(C2×C8).41C22 = C16⋊C4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).41C2^2 | 64,28 |
(C2×C8).42C22 = C23.C8 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).42C2^2 | 64,30 |
(C2×C8).43C22 = C23.36D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).43C2^2 | 64,98 |
(C2×C8).44C22 = C23.38D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).44C2^2 | 64,100 |
(C2×C8).45C22 = C4⋊M4(2) | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).45C2^2 | 64,104 |
(C2×C8).46C22 = C42.6C22 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).46C2^2 | 64,105 |
(C2×C8).47C22 = C42.6C4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).47C2^2 | 64,113 |
(C2×C8).48C22 = C42.7C22 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).48C2^2 | 64,114 |
(C2×C8).49C22 = SD16⋊C4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).49C2^2 | 64,121 |
(C2×C8).50C22 = Q16⋊C4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).50C2^2 | 64,122 |
(C2×C8).51C22 = C8.26D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).51C2^2 | 64,125 |
(C2×C8).52C22 = C8⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).52C2^2 | 64,149 |
(C2×C8).53C22 = C8.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).53C2^2 | 64,151 |
(C2×C8).54C22 = C42.28C22 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).54C2^2 | 64,170 |
(C2×C8).55C22 = C42.29C22 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).55C2^2 | 64,171 |
(C2×C8).56C22 = C42.30C22 | φ: C22/C1 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).56C2^2 | 64,172 |
(C2×C8).57C22 = (C22×C8)⋊C2 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).57C2^2 | 64,89 |
(C2×C8).58C22 = C2×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).58C2^2 | 64,96 |
(C2×C8).59C22 = C23.24D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).59C2^2 | 64,97 |
(C2×C8).60C22 = C2×C4⋊C8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).60C2^2 | 64,103 |
(C2×C8).61C22 = C42.12C4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).61C2^2 | 64,112 |
(C2×C8).62C22 = C8×D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).62C2^2 | 64,115 |
(C2×C8).63C22 = C4×SD16 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).63C2^2 | 64,119 |
(C2×C8).64C22 = C4×Q16 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).64C2^2 | 64,120 |
(C2×C8).65C22 = C8×Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).65C2^2 | 64,126 |
(C2×C8).66C22 = C4.4D8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).66C2^2 | 64,167 |
(C2×C8).67C22 = C4.SD16 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).67C2^2 | 64,168 |
(C2×C8).68C22 = C42.78C22 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).68C2^2 | 64,169 |
(C2×C8).69C22 = C2.D16 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).69C2^2 | 64,38 |
(C2×C8).70C22 = C2.Q32 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).70C2^2 | 64,39 |
(C2×C8).71C22 = C16⋊3C4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).71C2^2 | 64,47 |
(C2×C8).72C22 = C16⋊4C4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).72C2^2 | 64,48 |
(C2×C8).73C22 = C2×C2.D8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).73C2^2 | 64,107 |
(C2×C8).74C22 = C23.25D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).74C2^2 | 64,108 |
(C2×C8).75C22 = C4×D8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).75C2^2 | 64,118 |
(C2×C8).76C22 = C8⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).76C2^2 | 64,147 |
(C2×C8).77C22 = C8.18D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).77C2^2 | 64,148 |
(C2×C8).78C22 = C8⋊4D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).78C2^2 | 64,174 |
(C2×C8).79C22 = C4⋊Q16 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).79C2^2 | 64,175 |
(C2×C8).80C22 = C8.12D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).80C2^2 | 64,176 |
(C2×C8).81C22 = C8⋊2Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).81C2^2 | 64,181 |
(C2×C8).82C22 = C2×D16 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).82C2^2 | 64,186 |
(C2×C8).83C22 = C2×SD32 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).83C2^2 | 64,187 |
(C2×C8).84C22 = C2×Q32 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).84C2^2 | 64,188 |
(C2×C8).85C22 = C22×Q16 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).85C2^2 | 64,252 |
(C2×C8).86C22 = D8.C4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | 2 | (C2xC8).86C2^2 | 64,40 |
(C2×C8).87C22 = C8.4Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | 2 | (C2xC8).87C2^2 | 64,49 |
(C2×C8).88C22 = C2×C8.C4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).88C2^2 | 64,110 |
(C2×C8).89C22 = C4○D16 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | 2 | (C2xC8).89C2^2 | 64,189 |
(C2×C8).90C22 = C2×C4.Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).90C2^2 | 64,106 |
(C2×C8).91C22 = C8⋊8D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).91C2^2 | 64,146 |
(C2×C8).92C22 = C8⋊5D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).92C2^2 | 64,173 |
(C2×C8).93C22 = C8⋊3Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).93C2^2 | 64,179 |
(C2×C8).94C22 = C8.5Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).94C2^2 | 64,180 |
(C2×C8).95C22 = D4.C8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | 2 | (C2xC8).95C2^2 | 64,31 |
(C2×C8).96C22 = C8.C8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 16 | 2 | (C2xC8).96C2^2 | 64,45 |
(C2×C8).97C22 = C2×C8⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).97C2^2 | 64,84 |
(C2×C8).98C22 = C4×M4(2) | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).98C2^2 | 64,85 |
(C2×C8).99C22 = C8○2M4(2) | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).99C2^2 | 64,86 |
(C2×C8).100C22 = C8⋊9D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).100C2^2 | 64,116 |
(C2×C8).101C22 = C8⋊6D4 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).101C2^2 | 64,117 |
(C2×C8).102C22 = C8○D8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 16 | 2 | (C2xC8).102C2^2 | 64,124 |
(C2×C8).103C22 = C8⋊4Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).103C2^2 | 64,127 |
(C2×C8).104C22 = C2×M5(2) | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).104C2^2 | 64,184 |
(C2×C8).105C22 = D4○C16 | φ: C22/C2 → C2 ⊆ Aut C2×C8 | 32 | 2 | (C2xC8).105C2^2 | 64,185 |
(C2×C8).106C22 = C16⋊5C4 | central extension (φ=1) | 64 | | (C2xC8).106C2^2 | 64,27 |
(C2×C8).107C22 = C22⋊C16 | central extension (φ=1) | 32 | | (C2xC8).107C2^2 | 64,29 |
(C2×C8).108C22 = C4⋊C16 | central extension (φ=1) | 64 | | (C2xC8).108C2^2 | 64,44 |